搜尋記錄

 蘿 蔔 硫 素 的 健 康 益 處

1. 多項研究表明,蘿蔔硫素可以提供針對UVA和UVB炎症、曬傷和皮膚損傷的保護。

2. 蘿蔔硫素是一種有效的氧化劑,可以中和皮膚的炎症。

3. 炎症會引發許多皮膚狀況,是導致出現過早衰老跡象的主要原因,並使皮膚顯得暗沉和疲倦。

Ref: 1 , 2

1. 蘿蔔硫素已被証明可以促進全身自噬。

2. 自噬是身體清除受損細胞,以再生更健康細胞的方式。

2. 自噬的主要好處是抗衰老,讓身體時鐘倒轉並創造更年輕的細胞。

Ref: 3,4,5

1. 研究表明,蘿蔔硫素可減少各種炎症標誌物,這些標誌物對整體健康、能量水平和認知有影響。

2. 炎症是身體對受傷的反應,也可能在有一些慢性疾病中起作用。

3. 炎症是衰老的驅動因素,也是癌症、糖尿病、心臟病、抑鬱症和癡呆症等疾病的基礎。

Ref: 6,7,8,9,10

1. 蘿蔔硫素可提高肝臟第二階段解毒酶的活性作用,能有效和持續地提升人體的解毒能力,包括苯 。苯是最嚴重的毒素之一,一種已知的致癌物質,常見於汽車廢氣,香煙煙霧和空氣污染物中。

Ref: 11,12,13,14,15

1. 富含蔬菜的飲食方式是體重管理的主要建議之一,因為它們熱量比較低,而且營養豐富。

2. 研究表明,蘿蔔硫素會增加棕色脂肪組織,從而有助於減輕體重。

3. 蘿蔔硫素還可以增加瘦素反應, 從而減少飢餓感。

Ref: 16,17,18

1. 研究表明,蘿蔔硫素可降低LDL膽固醇("壞膽固醇")並増加HDL膽固醇("好膽固醇")

Ref: 19,20,21

1. 研究表明,蘿蔔硫素有助於將血糖維持在健康水平。

2. 蘿蔔硫素還可以幫助2型糖尿病患者降低血糖水平。

Ref: 22,23

1. 蘿蔔硫素已被証明對心血管健康有積極影響,並且蘿蔔硫素攝取量較高的人患心臟病的風險較低。

2. 蘿蔔硫素對”壞膽固醇”有積極影響,以及它的抗炎和抗氧化特性,都被認為有助於維持心血管健康。

Ref: 24,25,26,27

1. 蘿蔔硫素是一種間接抗氧化劑,它通過至少兩種機制來提高細胞的抗氧化能力。

2. 研究表明,蘿蔔硫素誘導第2階段解毒酶,並可以增加重要的抗氧化劑,如穀胱甘肽和SOD。

Ref: 28,29

1. 蘿蔔硫素保護一個關鍵的抗癌基因(p53),p53基因目前是癌症預防和治療研究的核心。

Ref: 30,31,32,33,34,35,36

1. 研究顯示,蘿蔔硫素可以顯著減輕年輕人和兒童的自閉症症狀

2. 蘿蔔硫素有可能激活保護細胞免受炎症,氧化應激和DNA 損傷的基因,這些與自閉症有關

3. 目前正在進行更多關於蘿蔔硫素與自閉症譜系障礙的研究。

Ref: 37,38,39


 

REFERENCES:

 

  1. Benedict, A. L., Knatko, E. V., & Dinkova-Kostova, A. T. (2012). The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis33(12), 2457–2466. https://doi.org/10.1093/carcin/bgs293
  2. Saw, C. L., Huang, M. T., Liu, Y., Khor, T. O., Conney, A. H., & Kong, A. N. (2011). Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Molecular carcinogenesis50(6), 479–486. https://doi.org/10.1002/mc.20725
  3. Herman-Antosiewicz, A., Johnson, D. E., & Singh, S. V. (2006). Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer research66(11), 5828–5835. https://doi.org/10.1158/0008-5472.CAN-06-0139
  4. Liu, H., Smith, A. J., Ball, S. S., Bao, Y., Bowater, R. P., Wang, N., & Michael Wormstone, I. (2017). Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. Journal of molecular medicine (Berlin, Germany)95(5), 553–564. https://doi.org/10.1007/s00109-016-1502-4
  5. Liu, H. J., Wang, L., Kang, L., Du, J., Li, S., & Cui, H. X. (2018). Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology51(2), 528–542. https://doi.org/10.1159/000495274
  6. Jiang, Y., Wu, S. H., Shu, X. O., Xiang, Y. B., Ji, B. T., Milne, G. L., Cai, Q., Zhang, X., Gao, Y. T., Zheng, W., & Yang, G. (2014). Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. Journal of the Academy of Nutrition and Dietetics114(5), 700–8.e2. https://doi.org/10.1016/j.jand.2013.12.019
  7. Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., Saretzki, G., Fox, C., Lawless, C., Anderson, R., Hewitt, G., Pender, S. L., Fullard, N., Nelson, G., Mann, J., van de Sluis, B., Mann, D. A., & von Zglinicki, T. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature communications2, 4172. https://doi.org/10.1038/ncomms5172
  8. Arai, Y., Martin-Ruiz, C. M., Takayama, M., Abe, Y., Takebayashi, T., Koyasu, S., Suematsu, M., Hirose, N., & von Zglinicki, T. (2015). Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine2(10), 1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029
  9. Navarro, S. L., Schwarz, Y., Song, X., Wang, C. Y., Chen, C., Trudo, S. P., Kristal, A. R., Kratz, M., Eaton, D. L., & Lampe, J. W. (2014). Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. The Journal of nutrition144(11), 1850–1857. https://doi.org/10.3945/jn.114.197434
  10. Parvin Mirmiran, Zahra Bahadoran, Farhad Hosseinpanah, Amitis Keyzad, Fereidoun Azizi. (2012). Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods, Volume 4, Issue 4, Pages 837-841, ISSN 1756-4646,
    https://doi.org/10.1016/j.jff.2012.05.012
  11. Egner, P. A., Chen, J. G., Zarth, A. T., Ng, D. K., Wang, J. B., Kensler, K. H., Jacobson, L. P., Muñoz, A., Johnson, J. L., Groopman, J. D., Fahey, J. W., Talalay, P., Zhu, J., Chen, T. Y., Qian, G. S., Carmella, S. G., Hecht, S. S., & Kensler, T. W. (2014). Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer prevention research (Philadelphia, Pa.)7(8), 813–823. https://doi.org/10.1158/1940-6207.CAPR-14-0103
  12. Brooks, J. D., Paton, V. G., & Vidanes, G. (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology10(9), 949–954
  13. Boddupalli, S., Mein, J. R., Lakkanna, S., & James, D. R. (2012). Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Frontiers in genetics3, 7. https://doi.org/10.3389/fgene.2012.00007
  14. Riedl, M. A., Saxon, A., & Diaz-Sanchez, D. (2009). Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clinical immunology (Orlando, Fla.)130(3), 244–251. https://doi.org/10.1016/j.clim.2008.10.007
  15. Kensler, T. W., Ng, D., Carmella, S. G., Chen, M., Jacobson, L. P., Muñoz, A., Egner, P. A., Chen, J. G., Qian, G. S., Chen, T. Y., Fahey, J. W., Talalay, P., Groopman, J. D., Yuan, J. M., & Hecht, S. S. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis33(1), 101–107. https://doi.org/10.1093/carcin/bgr229
  16. Zhang, H. Q., Chen, S. Y., Wang, A. S., Yao, A. J., Fu, J. F., Zhao, J. S., Chen, F., Zou, Z. Q., Zhang, X. H., Shan, Y. J., & Bao, Y. P. (2016). Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Molecular nutrition & food research60(10), 2185–2197. https://doi.org/10.1002/mnfr.201500915
  17. Nagata, N., Xu, L., Kohno, S., Ushida, Y., Aoki, Y., Umeda, R., Fuke, N., Zhuge, F., Ni, Y., Nagashimada, M., Takahashi, C., Suganuma, H., Kaneko, S., & Ota, T. (2017). Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes66(5), 1222–1236. https://doi.org/10.2337/db16-0662
  18. Shawky, N. M., & Segar, L. (2018). Sulforaphane improves leptin responsiveness in high-fat high-sucrose diet-fed obese mice. European journal of pharmacology835, 108–114. https://doi.org/10.1016/j.ejphar.2018.07.050
  19. Armah, C. N., Derdemezis, C., Traka, M. H., Dainty, J. R., Doleman, J. F., Saha, S., Leung, W., Potter, J. F., Lovegrove, J. A., & Mithen, R. F. (2015). Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular nutrition & food research59(5), 918–926. https://doi.org/10.1002/mnfr.201400863
  20. Bahadoran, Z., Mirmiran, P., Hosseinpanah, F., Rajab, A., Asghari, G., & Azizi, F. (2012). Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes research and clinical practice96(3), 348–354. https://doi.org/10.1016/j.diabres.2012.01.009
  21. Murashima, M., Watanabe, S., Zhuo, X. G., Uehara, M., & Kurashige, A. (2004). Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. BioFactors (Oxford, England)22(1-4), 271–275. https://doi.org/10.1002/biof.5520220154
  22. Axelsson, A. S., Tubbs, E., Mecham, B., Chacko, S., Nenonen, H. A., Tang, Y., Fahey, J. W., Derry, J., Wollheim, C. B., Wierup, N., Haymond, M. W., Friend, S. H., Mulder, H., & Rosengren, A. H. (2017). Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science translational medicine9(394), eaah4477. https://doi.org/10.1126/scitranslmed.aah4477
  23. Tubbs, E., Axelsson, A. S., Vial, G., Wollheim, C. B., Rieusset, J., & Rosengren, A. H. (2018). Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Molecular and cellular endocrinology461, 205–214. https://doi.org/10.1016/j.mce.2017.09.016
  24. Bai, Y., Wang, X., Zhao, S., Ma, C., Cui, J., & Zheng, Y. (2015). Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxidative medicine and cellular longevity2015, 407580. https://doi.org/10.1155/2015/407580
  25. Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Gao, J., Cai, H., Gao, Y. T., & Zheng, W. (2011). Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. The American journal of clinical nutrition94(1), 240–246. https://doi.org/10.3945/ajcn.110.009340
  26. Evans P. C. (2011). The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. The EPMA journal2(1), 9–14. https://doi.org/10.1007/s13167-011-0064-3
  27. Xin, Y., Bai, Y., Jiang, X., Zhou, S., Wang, Y., Wintergerst, K. A., Cui, T., Ji, H., Tan, Y., & Cai, L. (2018). Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway. Redox biology15, 405–417. https://doi.org/10.1016/j.redox.2017.12.016
  28. Sedlak, T. W., Nucifora, L. G., Koga, M., Shaffer, L. S., Higgs, C., Tanaka, T., Wang, A. M., Coughlin, J. M., Barker, P. B., Fahey, J. W., & Sawa, A. (2018). Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Molecular neuropsychiatry3(4), 214–222. https://doi.org/10.1159/000487639
  29. Brown, R. H., Reynolds, C., Brooker, A., Talalay, P., & Fahey, J. W. (2015). Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respiratory research16(1), 106. https://doi.org/10.1186/s12931-015-0253-z
  30. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. https://doi.org/10.1016/j.canlet.2008.04.018
  31. Cipolla, B. G., Mandron, E., Lefort, J. M., Coadou, Y., Della Negra, E., Corbel, L., Le Scodan, R., Azzouzi, A. R., & Mottet, N. (2015). Effect of Sulforaphane in Men with Biochemical Recurrence after Radical Prostatectomy. Cancer prevention research (Philadelphia, Pa.)8(8), 712–719. https://doi.org/10.1158/1940-6207.CAPR-14-0459
  32. Maria H Traka, Antonietta Melchini, Jack Coode-Bate, Omar Al Kadhi, Shikha Saha, Marianne Defernez, Perla Troncoso-Rey, Helen Kibblewhite, Carmel M O’Neill, Federico Bernuzzi, Laura Mythen, Jackie Hughes, Paul W Needs, Jack R Dainty, George M Savva, Robert D Mills, Richard Y Ball, Colin S Cooper, Richard F Mithen, Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial, The American Journal of Clinical Nutrition, Volume 109, Issue 4, April 2019, Pages 1133–1144, https://doi.org/10.1093/ajcn/nqz012
  33. Jennifer H. Cohen, Alan R. Kristal, Janet L. Stanford, Fruit and Vegetable Intakes and Prostate Cancer Risk, JNCI: Journal of the National Cancer Institute, Volume 92, Issue 1, 5 January 2000, Pages 61–68, https://doi.org/10.1093/jnci/92.1.61
  34. Bosetti, C., Filomeno, M., Riso, P., Polesel, J., Levi, F., Talamini, R., Montella, M., Negri, E., Franceschi, S., & La Vecchia, C. (2012). Cruciferous vegetables and cancer risk in a network of case-control studies. Annals of oncology : official journal of the European Society for Medical Oncology23(8), 2198–2203. https://doi.org/10.1093/annonc/mdr604
  35. Tang, L., Zirpoli, G. R., Jayaprakash, V., Reid, M. E., McCann, S. E., Nwogu, C. E., Zhang, Y., Ambrosone, C. B., & Moysich, K. B. (2010). Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC cancer10, 162. https://doi.org/10.1186/1471-2407-10-162
  36. Abbaoui, B., Riedl, K. M., Ralston, R. A., Thomas-Ahner, J. M., Schwartz, S. J., Clinton, S. K., & Mortazavi, A. (2012). Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Molecular nutrition & food research56(11), 1675–1687. https://doi.org/10.1002/mnfr.201200276
  37. Lynch, R., Diggins, E. L., Connors, S. L., Zimmerman, A. W., Singh, K., Liu, H., Talalay, P., & Fahey, J. W. (2017). Sulforaphane from Broccoli Reduces Symptoms of Autism: A Follow-up Case Series from a Randomized Double-blind Study. Global advances in health and medicine6, 2164957X17735826. https://doi.org/10.1177/2164957X17735826
  38. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15550-5. https://doi.org/10.1073/pnas.1416940111
  39. McGuinness, G., & Kim, Y. (2020). Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI journal19, 892–903. https://doi.org/10.17179/excli2020-2487

我們使用 Cookies

我們使用 Cookies 等工具來啟用我們網站上的基本服務和功能,並收集有關訪問者如何與我們的網站、產品和服務互動的數據。單擊接受即表示您同意我們使用這些工具進行廣告、分析和支持。